Abstract

We analyzed the trajectories of freely foraging Gymnotus sp., a pulse-type gymnotiform weakly electric fish, swimming in a dark arena. For each fish, we compared the its initial behavior as it learned the relative location of landmarks and food with its behavior after learning was complete, i.e. after time/distance to locate food had reached a minimal asymptotic level. During initial exploration when the fish did not know the arena layout, trajectories included many sharp angle head turns that occurred at nearly completely random intervals. After spatial learning was complete, head turns became far smoother. Interestingly, the fish still did not take a stereotyped direct route to the food but instead took smooth but variable curved trajectories. We also measured the fish's heading angle error (heading angle - heading angle towards food). After spatial learning, the fish's initial heading angle errors were strongly biased to zero, i.e. the fish mostly turned towards the food. As the fish approached closer to the food, they switched to a random search strategy with a more uniform distribution of heading angle errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.