Abstract
Due to the potential of the Unmanned Aerial Vehicle (UAV), they began to be increasingly used in various fields such as: environment, leisure, health, military, transport, etc. Along with increasing battery storage capacity, the UAVs began to be propulsion by Brushless DC (BLDC) motors. Failure of BLDC motors can lead to loss of control, which can cause accidents. In these conditions, it is necessary to devise methods that can find the defects of the BLDC motors in the UAVs. In this article, the authors propose a novel method to predict BLDC motor defects using machine learning. To maximize the method results, the performance of three machine learning models, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Bayesian Network (BN) in predicting the flaws of BLDC motors, have been compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.