Abstract
Investigating the stability of nonlinear waves often leads to linear or nonlinear eigenvalue problems for differential operators on unbounded domains. In this paper we propose to detect and approximate the point spectra of such operators (and the associated eigenfunctions) via contour integrals of solutions to resolvent equations. The approach is based on Keldysh’ theorem and extends a recent method for matrices depending analytically on the eigenvalue parameter. We show that errors are well-controlled under very general assumptions when the resolvent equations are solved via boundary value problems on finite domains. Two applications are presented: an analytical study of Schrödinger operators on the real line as well as on bounded intervals and a numerical study of the FitzHugh–Nagumo system. We also relate the contour method to the well-known Evans function and show that our approach provides an alternative to evaluating and computing its zeros.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.