Abstract

The WISE Catalog of Galactic HII Regions contains $\sim2000$ HII region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic HII region mid-infrared morphology of WISE $12\,\,\mu\,m$ emission surrounding $22\,\mu\,m$ emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope (GBT) hydrogen radio recombination line (RRL) and radio continuum detections at X-band (9GHz; 3cm) of 302 WISE HII region candidates (out of 324 targets observed) in the zone $225^{\circ} > l > -20^{\circ}$, $|b| \le 6^{\circ}$. Here we extend the sky coverage of our HII region Discovery Survey (HRDS), which now contains nearly 800 HII regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, five have ($l, b, v$) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes $>1^{\circ}$ in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183$-$01.422; $-$54.9 kms). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC HII regions are the most distant known in the Galaxy. We detect an additional three HII regions near $l \simeq 150^{\circ}$ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.