Abstract
The order parameter for a continuous transition shows diverging fluctuation near the critical point. Here we show, through numerical simulations and scaling arguments, that the inequality (or variability) between the values of an order parameter, measured near a critical point, is independent of the system size. Quantification of such variability through the Gini index (g) therefore leads to a scaling form g=G[|F-F_{c}|N^{1/dν}], where F denotes the driving parameter for the transition (e.g., temperature T for ferromagnetic to paramagnetic transition, or lattice occupation probability p in percolation), N is the system size, d is the spatial dimension and ν is the correlation length exponent. We demonstrate the scaling for the Ising model in two and three dimensions, site percolation on square lattice, and the fiber bundle model of fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.