Abstract
An increasing number of temporal categorical databases are being collected: Electronic Health Records in healthcare organizations, traffic incident logs in transportation systems, or student records in universities. Finding similar records within these large databases requires effective similarity measures that capture the searcher's intent. Many similarity measures exist for numerical time series, but temporal categorical records are different. We propose a temporal categorical similarity measure, the M&M (Match & Mismatch) measure, which is based on the concept of aligning records by sentinel events, then matching events between the target and the compared records. The M&M measure combines the time differences between pairs of events and the number of mismatches. To accom-modate customization of parameters in the M&M measure and results interpretation, we implemented Similan, an interactive search and visualization tool for temporal categorical records. A usability study with 8 participants demonstrated that Similan was easy to learn and enabled them to find similar records, but users had difficulty understanding the M&M measure. The usability study feedback, led to an improved version with a continuous timeline, which was tested in a pilot study with 5 participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.