Abstract

Finding compact and well-separated clusters in data sets is a challenging task. Most clustering algorithms try to minimize certain clustering objective functions. These functions usually reflect the intra-cluster similarity and inter-cluster dissimilarity. However, the use of such functions alone may not lead to the finding of well-separated and, in some cases, compact clusters. Therefore additional measures, called cluster validity indices, are used to estimate the true number of well-separated and compact clusters. Some of these indices are well-suited to be included into the optimization model of the clustering problem. Silhouette coefficients are among such indices. In this paper, a new optimization model of the clustering problem is developed where the clustering function is used as an objective and silhouette coefficients are used to formulate constraints. Then an algorithm, called CLUSCO (CLustering Using Silhouette COefficients), is designed to construct clusters incrementally. Three schemes are discussed to reduce the computational complexity of the algorithm. Its performance is evaluated using fourteen real-world data sets and compared with that of three state-of-the-art clustering algorithms. Results show that the CLUSCO is able to compute compact clusters which are significantly better separable in comparison with those obtained by other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.