Abstract
We study the convergence of an iterative projection/reflection algorithm originally proposed for solving what are known as phase retrieval problems in optics. There are two features that frustrate any analysis of iterative methods for solving the phase retrieval problem: nonconvexity and infeasibility. The algorithm that we developed, called relaxed averaged alternating reflections (RAAR), was designed primarily to address infeasibility, though our strategy has advantages for nonconvex problems as well. In the present work we investigate the asymptotic behavior of the RAAR algorithm for the general problem of finding points that achieve the minimum distance between two closed convex sets in a Hilbert space with empty intersection, and for the problem of finding points that achieve a local minimum distance between one closed convex set and a closed prox-regular set, also possibly nonintersecting. The nonconvex theory includes and expands prior results limited to convex sets with nonempty intersection. To place the RAAR algorithm in context, we develop parallel statements about the standard alternating projections algorithm and gradient descent. All of the various algorithms are unified as instances of iterated averaged alternating proximal reflectors applied to a sum of regularized maximal monotone mappings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.