Abstract
A tandem duplication random loss (TDRL) operation duplicates a contiguous segment of genes, followed by the loss of one copy of each of the duplicated genes. Although the importance of this operation is founded by several recent biological studies, it has been investigated only rarely from a theoretical point of view. Of particular interest are sorting TDRLs which are TDRLs that, when applied to a permutation representing a genome, reduce the distance towards another given permutation. The identification of sorting genome rearrangement operations in general is a key ingredient of many algorithms for reconstructing the evolutionary history of a set of species. In this paper we present methods to compute all sorting TDRLs for two given gene orders. In addition, a closed formula for the number of sorting TDRLs is derived and further properties of sorting TDRLs are investigated. It is also shown that the theoretical findings are useful for identifying unique sorting TDRL scenarios for mitochondrial gene orders.KeywordsGene OrderTandem DuplicationBinary StringClosed FormulaRestricted CaseThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.