Abstract

An efficient algorithm is proposed for finding all solutions of nonlinear equations using linear programming (LP). This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations in a given region. In the conventional LP test, the system of nonlinear equations is transformed into an LP problem, to which the simplex method is applied. However, although the LP test is very powerful, it requires many pivotings for each region. In this paper, we use the dual simplex method in the LP test, which makes the average number of pivotings per region much smaller (less than one, for example) and makes the algorithm very efficient. By numerical examples, it is shown that the proposed algorithm can find all solutions of systems of 200 nonlinear equations in practical computation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.