Abstract

We present a sampling-based framework for multi-robot motion planning. which combines an implicit representation of roadmaps for multi-robot motion planning with a novel approach for pathfinding in geometrically embedded graphs tailored for our setting. Our pathfinding algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated RRT algorithm for the discrete case of a graph, and it enables a rapid exploration of the high-dimensional configuration space by carefully walking through an implicit representation of the tensor product of roadmaps for the individual robots. We demonstrate our approach experimentally on scenarios that involve as many as 60 degrees of freedom and on scenarios that require tight coordination between robots. On most of these scenarios our algorithm is faster by a factor of at least 10 when compared to existing algorithms that we are aware of.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.