Abstract

This paper analyzes the privacy of traditional Statistical Disclosure Control (SDC) systems under a differential privacy interpretation. SDCs, such as cell suppression and swapping, promise to safeguard the confidentiality of data and are routinely adopted in data analyses with profound societal and economic impacts. Through a formal analysis and empirical evaluation of demographic data from real households in the U.S., the paper shows that widely adopted SDC systems not only induce vastly larger privacy losses than classical differential privacy mechanisms, but, they may also come at a cost of larger accuracy and fairness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.