Abstract

AbstractWe introduce Finch, a Julia-based domain specific language (DSL) for solving partial differential equations in a discretization agnostic way, currently including finite element and finite volume methods. A key focus is code generation for various internal or external software targets. Internal targets use a modular set of tools in Julia providing a direct solution within the framework. In contrast, external code generation produces a set of code files to be compiled and run with external libraries or frameworks. Examples include a matlab target, for smaller problems or prototyping, or C++/MPI based targets for larger problems needing scalability. This allows us to take advantage of their capabilities without needlessly duplicating them, and provides options tailored to the needs of the domain scientist. The modular design of Finch allows ongoing development of these target modules resulting in a more extensible framework and a broader set of applications. The support for multiple discretizations, including finite element and finite volume methods, also contributes to this goal. Another focus of this project is complex systems containing a large set of coupled PDEs that could be challenging to efficiently code and optimize by hand, but that are relatively simple to specify using the DSL. In this paper we present the key features of Finch that set it apart from many other DSL options, and demonstrate the basic usage and current capabilities through examples.KeywordsDomain specific languageCode generationFinite element methodFinite volume methodParallel computingJulia

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call