Abstract
The application of fiber-reinforced polymer ~FRP! technology to bridges can provide performance enhancements at a time when there is a large and growing need to replace aging bridges in the United States. However, construction costs are significantly higher than with traditional methods, and it is not clear if this technology can become competitive in the standard short-span bridge market. This study investigates current and future costs to determine how cost competitive this technology is likely to become, taking into account the expected improvements in manufacturing, transport, and installation, as well as life-cycle differences. Based on two demonstration FRP bridges and the learning curve approach, the results show that anticipated improvements would not be sufficient to compete on cost with reinforced-concrete bridges. Unless significant improvement also occurs in the cost of component material, this technology will not be cost competitive for the standard short-span bridge, and the application of FRP technology will be limited to other segments of the market, such as bridge deck construction and bridge repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.