Abstract
In this chapter we propose a financial trading system whose trading strategy is developed by means of an artificial neural network approach based on a learning algorithm of the recurrent reinforcement type. In general terms, this kind of approach consists, first, of directly specifying a trading policy based on some predetermined investor’s measure of profitability, and second, of directly setting the financial trading system while using it. In particular, with respect to the prominent literature, in this contribution we take into account as a measure of profitability the reciprocal of the returns weighted direction symmetry index instead of the widespread Sharpe ratio, and we obtain the differential version of the measure of profitability we consider and all the related learning relationships. Finally, we propose a simple procedure for the management of drawdown-like phenomena, and finally, we apply our financial trading approach to some of the most prominent assets of the Italian stock market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.