Abstract

An improved neural network of time series predicting is presented in this paper. We introduce a random data-time effective radial basis function neural network in determination of the output weights, the center vectors and the widths in the hidden layer of the network. In the training modeling, we consider that the historical data on the financial market is key to the investors' decision-making for their investing positions, and the impact of historical data depends closely on the time. We develop a random data-time effective function to describe this impact strength, and a weight is given to each of the historical data, where a drift function and a random Brownian volatility function are applied to express the behavior of the time strength. Further, this neural network is applied to the prediction of financial price series of crude oil, SSE, N225 and DAX. The empirical experiments show that the proposed neural network results in better performance in financial time series forecasting and is advantageous in increasing the forecasting precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.