Abstract

NIST has played a key role in many of the one-on-one, domestic, and international interlaboratory comparisons of measurements on superconductors. The history of interlaboratory comparisons of measurements on superconductors tells us that careful measurement methods are needed to obtain consistent results. Inconsistent results can lead to many problems including: a mistrust of the results of others, unfair advantages in commerce, and erroneous feedback in the optimization of conductor performance. NIST has experience in many interlaboratory comparisons; a long-term commitment to measurement accuracy; and independent, third-party laboratory status. The principal investigator's direct involvement in the measurements and daily supervision of sample mounting is the unique situation that has allowed important discoveries and evolution of our capabilities over the last 30 years. The principal investigator's research and metrology has helped to improve the accuracy of critical-current (I{sub c}) measurements in laboratories throughout the world. As conductors continue to improve and design limits are tested, the continuation of the long-term commitment to measurement accuracy could be vitally important to the success of new conductor development programs. It is extremely important to the U.S. wire manufacturers to get accurate (high certainty) I{sub c} measurements in order to optimize conductor performance. The optimization requires the adjustment of several fabrication parameters (such as reaction time, reaction temperature, conductor design, doping, diffusion barrier, Cu to non-Cu ratio, and twist pitch) based on the I{sub c} measurement of the conductor. If the I{sub c} measurements are made with high variability, it may be unclear whether or not the parameters are being adjusted in the optimal direction or whether or not the conductor meets the target specification. Our metrology is vital to the U.S. wire manufacturers in the highly competitive international arena and to meet the aggressive performance goals. The latest high-performance Nb{sub 3}Sn wires are being designed with higher current densities, larger effective filament diameter, less Cu stabilizer, and, in some cases, larger wire diameters than ever before. In addition, some of the conductor designs and heat treatments cause the residual resistivity ratio (RRR, ratio of room temperature resistivity to the resistivity at 20 K) of the stabilizer to be less than 20. These parameters are pushing the conductors towards less intrinsic stability, into a region we call marginally stable. These parameters also create a whole series of challenges for routine I{sub c} testing on short-samples, even when tested with the sample immersed in liquid helium. High-current, variable-temperature I{sub c} measurements are even more difficult than those made in liquid helium because the sample is only cooled by flowing helium gas. Providing accurate I{sub c} results under these conditions requires a complex system that provide adequate cooling as well as uniform sample temperature. We have been make variable-temperature measurements for about 15 years, but we started to design the first high-current (at least 500 A), variable-temperature, variable-strain apparatus in late 2006. Our first critical-current measurements as a function of strain, temperature, and magnetic field, I{sub c}(B,T,{var_epsilon}), in a new single, unified apparatus (full matrix characterization) were made in the summer of 2008. This is the only such facility in the U.S. and it has some unique components that are not duplicated anywhere in the world. The compounding of all three variables (H, T, {var_epsilon}) makes an already labor and time intensive characterization very formidable; however, the results cannot be generated any other way and are needed to answer key questions about strain and temperature safety margins and about the reliability of using scaling laws based on small data sets to predict performance. In the future, this new apparatus will allow NIST to create a database on strands that would benefit U.S. superconductor wire manufacturers, national research laboratories, and programs using superconductor strands such as HEP and International Thermonuclear Experimental Reactor (ITER).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.