Abstract

The research reported here involves studies of radial particle transport in a cylindrical, low-density Malmberg-Penning non-neutral plasma trap. The research is primarily experimental but involves careful comparisons to analytical theory and includes the results of a single-particle computer code. The transport is produced by applied electric fields that break the cylindrical symmetry of the trap, hence the term ``asymmetry-induced transport.'' Our computer studies have revealed the importance of a previously ignored class of particles that become trapped in the asymmetry potential. In many common situations these particles exhibit large radial excursions and dominate the radial transport. On the experimental side, we have developed new data analysis techniques that allowed us to determine the magnetic field dependence of the transport and to place empirical constraints on the form on the transport equation. Experiments designed to test the computer code results gave varying degrees of agreement with further work being necessary to understand the results. This work expands our knowledge of the varied mechanisms of cross-magnetic-field transport and should be of use to other workers studying plasma confinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call