Abstract
ABSTRACT Initial work focused on the regulation of nitrite reductase, the defining reaction of denitrification as well as nitric oxide (NO) reductase. Expression of the genes encoding both proteins was controlled by NnrR. This regulator was shown to be responsive to NO. More recent work has shown NnrR function is also likely inhibited by oxygen. Therefore, it is this protein that sets the oxygen level at which nitrate respiration takes over from aerobic respiration. The gene encoding NO reductase appears to only require NnrR for expression. Expression of the gene encoding nitrite reductase is more complex. In addition to NnrR, a two component sensor regulator complex termed PrrA and PrrB is also required for expression. These proteins are global regulators and serve to link denitrification with other bioenergetic processes in the cell. They also provide an additional layer of oxygen dependent regulation. The sequencing of the R. sphaeroides 2.4.3 genome allowed us to identify several other genes regulated by NnrR. Surprisingly, most of the genes were not essential for denitrification. Their high level of conservation in related denitrifiers suggests they do provide a selectable benefit to the bacterium, however. We also examined the role of nitrate reductase in contributing to denitrification more » in R. sphaeroides. Strain 2.4.3 is unusual in having two distinct, but related clusters of genes encoding nitrate reductase. One of these genes clusters is expressed under high oxygen conditions but is repressed, likely by PrrB-PrrA, under low oxygen conditions. The other cluster is expressed only under low oxygen conditions. This cluster expresses the nitrate reductase used during denitrification. The high oxygen expressed cluster encodes a protein used for redox homeostasis. Surprisingly, both clusters are fully expressed even in the absence of nitrate. During the course of this work we found that the type strain of R. sphaeroides, 2.4.1, is a partial denitrifier because it has the nitrate and NO reductases but lacks nitrite reductase. Like 2.4.3 it uses NnrR to regulate NO reductase. This unexpected arrangement suggested that it may use NO reductase to detoxify NO produced in its environment. Using a green fluorescent protein based reporter system we were able to demonstrate that NO produced by a denitrifier such as 2.4.3 can induce expression of NO reductase in 2.4.1. We then went on to show that the NO produced by denitrifiers can induce a stress response in other non-denitrifying bacteria. This suggests that the NO produced during denitrification will have a significant impact on the non-denitrifiers present in the surrounding environment. We also expanded our studies to include the denitrifier Agrobacterium tumefaciens. We demonstrated that the expression of the nitrite and NO reductase genes in this bacterium follows the same general scheme as in R. sphaeroides. We also were able to show that this bacterium would induce NO reductase in response to the NO produced by plants. Importantly, we were able to demonstrate that A. tumefaciens had difficulty transitioning from aerobic respiration to denitrification if the transition was sudden. This difficulty manifested as an accumulation of NO. In some conditions cells were slowly able to switch modes of respiration but in other cases NO accumulations seemed to kill the cells. The difficulty in transition appears to be due to an inability to produce enough energy once the oxygen has been completely consumed. « less
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.