Abstract

We investigate theoretically the possible final stationary configurations that can be reached by a laterally confined uniform liquid film inside a container. The liquid is under the action of gravity, surface tension, and the molecular interaction with the solid substrate. We study the case when the container is in an upright position as well as when it is turned upside down. The governing parameters of the problem are the initial thickness of the film, the size of the recipient that contains the liquid, and a dimensionless number that quantifies the relative strength of gravity with respect to the molecular interaction. The uniform film is always a possible final state and depending on the value of the parameters, up to three different additional final states may exist, each one consisting in a droplet surrounded by a thin film. We derive analytical expressions for the energy of these possible final configurations and from these we analyze which state is indeed reached. A uniform thin film may show three different behaviors after a perturbation: The system recovers its initial shape after any perturbation, the fluid evolves towards a drop (if more than one is possible, it tends toward that with the thinnest precursor film) for any perturbation, or the system ends as a uniform film or a drop depending on the details of the perturbation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.