Abstract
The inspiral of binary black holes is governed by gravitational radiation reaction at binary separations r < 1000 M, yet it is too computationally expensive to begin numerical-relativity simulations with initial separations r > 10 M. Fortunately, binary evolution between these separations is well described by post-Newtonian equations of motion. We examine how this post-Newtonian evolution affects the distribution of spin orientations at separations r ~ 10 M where numerical-relativity simulations typically begin. Although isotropic spin distributions at r ~ 1000 M remain isotropic at r ~ 10 M, distributions that are initially partially aligned with the orbital angular momentum can be significantly distorted during the post-Newtonian inspiral. Spin precession tends to align (anti-align) the binary black hole spins with each other if the spin of the more massive black hole is initially partially aligned (anti-aligned) with the orbital angular momentum, thus increasing (decreasing) the average final spin. Spin precession is stronger for comparable-mass binaries, and could produce significant spin alignment before merger for both supermassive and stellar-mass black hole binaries. We also point out that precession induces an intrinsic accuracy limitation (< 0.03 in the dimensionless spin magnitude, < 20 degrees in the direction) in predicting the final spin resulting from the merger of widely separated binaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.