Abstract

We formulate a general SEIR epidemic model in a heterogeneous population characterized by some trait in a discrete or continuous subset of a space [Formula: see text]. The incubation and recovery rates governing the evolution of each homogeneous subpopulation depend upon this trait, and no restriction is assumed on the contact matrix that defines the probability for an individual of a given trait to be infected by an individual with another trait. Our goal is to derive and study the final size equation fulfilled by the limit distribution of the population. We show that this limit exists and satisfies the final size equation. The main contribution of this work is to prove the uniqueness of this solution among the distributions smaller than the initial condition. We also establish that the dominant eigenvalue of the next-generation operator (whose initial value is equal to the basic reproduction number) decreases along every trajectory until a limit smaller than 1. The results are shown to remain valid in the presence of a diffusion term. They generalize previous works corresponding to finite number of traits (including metapopulation models) or to rank 1 contact matrices (modeling e.g. susceptibility or infectivity presenting heterogeneity independently of one another).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.