Abstract

This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquidmore » metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety Implications of Advanced Technology Power Conversion and Design Innovations and Simplifications: Investigations of supercritical CO{sub 2} gas turbine Brayton cycles coupled to the sodium-cooled reactors and innovative concepts for sodium-to-CO{sub 2} heat exchangers were performed to discover new designs for high efficiency electricity production. The objective of the analyses was to characterize the design and safety performance of equipment needed to implement the new power cycle. The project included considerations of heat transfer and power conversion systems arrangements and evaluations of systems performance. Task 4--Post Accident Heat Removal and In-Vessel Retention: Test plans were developed to evaluate (1) freezing and plugging of molten metallic fuel in subassembly geometry, (2) retention of metallic fuel core melt debris within reactor vessel structures, and (3) consequences of intermixing of high pressure CO{sub 2} and sodium. The objective of the test plan development was to provide planning for measurements of data needed to characterize the consequences of very low probability accident sequences unique to metallic fuel and CO{sub 2} Brayton power cycles. The project produced three test plans ready for execution.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call