Abstract

Laser-induced polarization spectroscopy (LIPS), degenerate four-wave mixing (DFWM), and electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) are techniques that shows great promise for sensitive measurements of transient gas-phase species, and diagnostic applications of these techniques are being pursued actively at laboratories throughout the world. However, significant questions remain regarding strategies for quantitative concentration measurements using these techniques. The primary objective of this research program is to develop and test strategies for quantitative concentration measurements in flames and plasmas using these nonlinear optical techniques. Theoretically, we are investigating the physics of these processes by direct numerical integration (DNI) of the time-dependent density matrix equations that describe the wave-mixing interaction. Significantly fewer restrictive assumptions are required when the density matrix equations are solved using this DNI approach compared with the assumptions required to obtain analytical solutions. For example, for LIPS calculations, the Zeeman state structure and hyperfine structure of the resonance and effects such as Doppler broadening can be included. There is no restriction on the intensity of the pump and probe beams in these nonperturbative calculations, and both the pump and probe beam intensities can be high enough to saturate the resonance. As computer processing speeds have increased, we have incorporated more complicated physical models into our DNI codes. During the last project period we developed numerical methods for nonperturbative calculations of the two-photon absorption process. Experimentally, diagnostic techniques are developed and demonstrated in gas cells and/or well-characterized flames for ease of comparison with model results. The techniques of two-photon, two-color H-atom LIPS and three-laser ERE CARS for NO and C{sub 2}H{sub 2} were demonstrated during the project period, and nonperturbative numerical models of both of these techniques were developed. In addition, we developed new single-mode, injection-seeded optical parametric laser sources (OPLSs) that will be used to replace multi-mode commercial dye lasers in our experimental measurements. The use of single-mode laser radiation in our experiments will increase significantly the rigor with which theory and experiment are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call