Abstract

Optical parametric chirped-pulse amplification (OPCPA) using high-energy Nd:glass lasers has the potential to produce ultra-intense pulses (>1023 W/cm2). We report on the performance of the final high-efficiency amplifier in an OPCPA system based on large-aperture (63 × 63-mm2) partially deuterated potassium dihydrogen phosphate (DKDP) crystals. The seed beam (180-nm bandwidth, 110 mJ) was provided by the preceding OPCPA stages. A maximum pump-to-signal conversion efficiency of 41% and signal energy up to 13 J were achieved with a 52-mm-long DKDP crystal due to the flattop super-Gaussian pump beam profile and flat-in-time pulse shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call