Abstract

Robot foot and gripper structures with compliancy using different mechanical solutions have been developed to enhance proper contact formations and gripping on various substrates. The Fin Ray structure is one of the solutions. Although the Fin Ray effect has been proposed and exploited, no detailed investigation has been conducted on the effect of different crossbeam angles inside its frame. Thus, herein, an integrative approach is used, combining 3D printing with soft material, finite element modeling, and neural control to 1) manufacture the Fin Ray structure with compliancy; 2) investigate the effect of different crossbeam angles under different loads and cylindrical substrates; and 3) finally apply it as an efficient compliant robot foot structure for energy‐efficient on‐pipe locomotion. Considering the factors of a large contact area, high energy efficiency, and better durability, the Fin Ray model with nonstandard 10°‐inclined crossbeams provides the best compromise in comparison with other models, within the constraints of the defined geometric parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.