Abstract

We investigate the use of Generative Adversarial Networks (GANs) for probabilistic forecasting of financial time series. To this end, we introduce a novel economics-driven loss function for the generator. This newly designed loss function renders GANs more suitable for a classification task, and places them into a supervised learning setting, whilst producing full conditional probability distributions of price returns given previous historical values. Our approach moves beyond the point estimates traditionally employed in the forecasting literature, and allows for uncertainty estimates. Numerical experiments on equity data showcase the effectiveness of our proposed methodology, which achieves higher Sharpe Ratios compared to classical supervised learning models, such as LSTMs and ARIMA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.