Abstract
The paper presents the modeling of a fin-cooled photovoltaic (PV) module, under real operating conditions. A full reconstruction of both the thermal behavior – transient energy balance, loss to the environment and module temperature - and the electrical dynamics for the system allows the efficiency gain assessment, associated with an increased heat exchange with ambient air. Various layouts are considered, in terms of fins mass and its effects on the heat capacity, fins amount and fins geometry. The model accounts for the PV module performances dependence on the (i) operating temperature and (ii) solar irradiance and integrates a section for continuous update of I-V PV characteristics, based on a standard five parameters model and the one-diode approximation. The merge between limit performances - as provided by the manufacturer – and evidences from an extensive experimental campaign for the in-field module characterization, allow a detailed reconstruction of the electric power associated with the module operation and prevent any bias in the model output. The potential of fins in module temperature control and electric efficiency enhancement is assessed and confirms the appeal of such a layout with respect to more consolidated cooling techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.