Abstract

Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens.

Highlights

  • The innate immune system plays a crucial role in the early defence against microbial infections [1,2,3,4,5,6]

  • The innate immune system is an evolutionarily conserved defence mechanism that protects the host from infection by microbes such as viruses, bacteria and fungi

  • Incoming pathogens are recognized by a set of evolutionary conserved receptors, including the Toll-like receptors (TLRs), that can be found on the surface of epithelial cells at the mucosal surface

Read more

Summary

Introduction

The innate immune system plays a crucial role in the early defence against microbial infections [1,2,3,4,5,6]. The innate immune system detects infections through germ-line encoded pattern recognition receptors [7], such as Toll-like receptors (TLRs). TLRs recognize conserved structures present in large groups of microorganisms, but not found in the host, called pathogenassociated molecular patterns (PAMPs) [8,9,10,11,12]. 10 TLRs have been identified in mice and humans [13,14,15,16], with each receptor recognizing a unique set of PAMPs [17,18]. TLRs initiate intracellular signalling through their cytoplasmic Toll/IL-1 (TIR) domain. These signalling pathways can be divided into common (MyD88-dependent) and specific (MyD88independent) categories.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.