Abstract

The filtration combustion characteristics of hydrogen-air, propane-air, and methane-air mixtures in inert porous media have been studied experimentally. It is shown that the dependences of the combustion wave velocity on the fuel-air equivalence ratio are V-shaped. For hydrogen-air mixtures, the velocity minimum is shifted to the rich region, and for propane-air and methane-air mixtures, it is shifted to the lean region. For lean hydrogen-air and rich propane-air mixtures, the measured maximum temperatures in the combustion wave are found to be reduced relative to those calculated theoretically. For methane-air mixtures, a reduction in the measured temperatures is observed over the entire range of the mixture composition. The results are interpreted within the framework of the hypothesis of selective diffusion of gas mixture components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.