Abstract

Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm) as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality.

Highlights

  • Membrane bioreactor (MBR) technology produces a largely disinfected effluent [1] with reuse potential but the technology consumes quite some energy [1,2]

  • Other methods to express the fouling potential of the sludge, based on dead-end filtration and data observation are described by Geilvoet [4], Judd [5], and de la Torre [11]

  • The available methods to measure fouling are, at present, fast enough to become practical, capable of satisfactory quantify removable fouling and identify the existence of irremovable fouling, capable of producing results, which can eventually lead to the optimization of full-scale MBR operation

Read more

Summary

Introduction

Membrane bioreactor (MBR) technology produces a largely disinfected effluent [1] with reuse potential but the technology consumes quite some energy [1,2]. Krzeminski et al [2] investigated the energy consumption of two full-scale submerged MBRs, which amounted to 1.05 kW·h·m−3 and. In these MBRs membrane aeration was responsible for 57% and 37%, respectively, of the total specific energy. In a full-scale side-stream MBR, consuming a total of 0.97 kW·h·m−3, membrane aeration and feed pumps components were responsible for 35% and 43%, respectively [2]. Both in submerged and side-stream MBRs the abovementioned energy components are intended to remove or minimize fouling. The major cause of high energy consumption in MBR technology is the prevention and removal of membrane fouling

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.