Abstract

BackgroundPaper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with—and potential exchange of—microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter) and June (Summer) 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.ResultsShotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.ConclusionsWe conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

Highlights

  • Metagenomics has revolutionized the analysis of complex microbial communities by enabling the identification of unculturable microbes in environmental samples [1, 2]

  • The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus

  • Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation

Read more

Summary

Introduction

Metagenomics has revolutionized the analysis of complex microbial communities by enabling the identification of unculturable microbes in environmental samples [1, 2]. People encounter microbes on virtually every surface they touch and this daily contact has the potential to influence their well-being, yet we know very little about the microbial reservoir of urban surfaces or how they influence human health. Characterizing the microbial composition of surfaces is an important first step to understand the interactions between humans and microorganisms, and serves as a means to monitor and potentially control the spread of diseases. Microbial communities within homes [7] and offices [8] are highly similar to those of their occupants, and surfaces frequently contacted by human hands such as keyboards [9], cell phones [10], ATM buttons [11], and subway holds [12] have microbial communities largely composed of skin taxa. Frequency of use, the identity of the interacting individuals, and biogeography influence surface microbial communities [13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call