Abstract
We are concerned here with processing discontinuous functions from their spectral information. We focus on two main aspects of processing such piecewise smooth data: detecting the edges of a piecewise smooth f, namely, the location and amplitudes of its discontinuities; and recovering with high accuracy the underlying function in between those edges. If f is a smooth function, say analytic, then classical Fourier projections recover f with exponential accuracy. However, if f contains one or more discontinuities, its global Fourier projections produce spurious Gibbs oscillations which spread throughout the smooth regions, enforcing local loss of resolution and global loss of accuracy. Our aim in the computation of the Gibbs phenomenon is to detect edges and to reconstruct piecewise smooth functions, while regaining the high accuracy encoded in the spectral data.To detect edges, we utilize a general family of edge detectors based on concentration kernels. Each kernel forms an approximate derivative of the delta function, which detects edges by separation of scales. We show how such kernels can be adapted to detect edges with one- and two-dimensional discrete data, with noisy data, and with incomplete spectral information. The main feature is concentration kernels which enable us to convert global spectral moments into local information in physical space. To reconstruct f with high accuracy we discuss novel families of mollifiers and filters. The main feature here is making these mollifiers and filters adapted to the local region of smoothness while increasing their accuracy together with the dimension of the data. These mollifiers and filters form approximate delta functions which are properly parametrized to recover f with (root-) exponential accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.