Abstract
We consider a filtering problem for a Gaussian diffusion process observed via discrete‐time samples corrupted by a non‐Gaussian white noise. Combining the Goggin′s result [2] on weak convergence for conditional expectation with diffusion approximation when a sampling step goes to zero we construct an asymptotic optimal filter. Our filter uses centered observations passed through a limiter. Being asymptotically equivalent to a similar filter without centering, it yields a better filtering accuracy in a prelimit case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.