Abstract

Deformation-rate distributed acoustic sensing (DAS), made available by the unique designs of certain interrogator units, acquires seismic data that are theoretically equivalent to the along-fiber particle velocity motion recorded by geophones for scenarios involving elastic ground-fiber coupling. While near-elastic coupling can be achieved in cemented downhole installations, it is less obvious how to do so in lower-cost horizontal deployments. This investigation addresses this challenge by installing and freezing fiber in shallow backfilled trenches (to 0.1 m depth) to achieve improved coupling. This acquisition allows for a reinterpretation of processed deformation-rate DAS waveforms as a "filtered particle velocity" rather than the conventional strain-rate quantity. We present 1D and 2D filtering experiments that suggest 2D velocity-dip filtering can recover improved DAS data panels that exhibit clear surface and refracted arrivals. Data acquired on DAS fibers deployed in backfilled, frozen trenches were more repeatable over a day of acquisition compared to those acquired on a surface-deployed DAS fiber, which exhibited more significant amplitude variations and lower signal-to-noise ratios. These observations suggest that deploying fiber in backfilled, frozen trenches can help limit the impact of environmental factors that would adversely affect interpretations of time-lapse DAS observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call