Abstract

AbstractThis article addresses the filtering design problem for discrete‐time Markov jump linear systems (MJLS) under the assumption that the transition probabilities are not completely known. We present the methods to determine ℋ︁2‐ and ℋ︁∞‐norm bounded filters for MJLS whose transition probability matrices have uncertainties in a convex polytope and establish an equivalence with the ones with partly unknown elements. The proposed design, based on linear matrix inequalities, allows different assumptions on Markov mode availability to the filter and on system parameter uncertainties to be taken into account. Under mode‐dependent assumption and internal model knowledge, observer‐based filters can be obtained and it is shown theoretically that our method outperforms some available ones in the literature to date. Numerical examples illustrate this claim. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.