Abstract

ABSTRACT This paper discusses the problem of estimating a stochastic signal from nonlinear uncertain observations with time-correlated additive noise described by a first-order Markov process. Random deception attacks are assumed to be launched by an adversary, and both this phenomenon and the uncertainty in the observations are modelled by two sets of Bernoulli random variables. Under the assumption that the evolution model generating the signal to be estimated is unknown and only the mean and covariance functions of the processes involved in the observation equation are available, recursive algorithms based on linear approximations of the real observations are proposed for the least-squares filtering and fixed-point smoothing problems. Finally, the feasibility and effectiveness of the developed estimation algorithms are verified by a numerical simulation example, where the impact of uncertain observation and deception attack probabilities on estimation accuracy is evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call