Abstract

With the advent of digital technologies as an integral part of today’s everyday life, the risk of information security breaches is increasing. Email spam, commonly known as junk email, continues to pose a significant challenge in the digital realm, inundating inboxes with unsolicited and often irrelevant messages. This relentless influx of spam not only disrupts user productivity but also raises security concerns, as it frequently serves as a vehicle for phishing attempts, malware distribution, and other cyber threats. The prevalence of spam is fueled by its low-cost dissemination and its ability to reach a wide audience, exploiting vulnerabilities in email systems. This paper marks the inception of an in-depth investigation into the viability and potential implementation of a robust spam filtering and prevention system tailored explicitly to university networks. With the escalating threat of email-based hacking attacks and the incessant deluge of spam, the need for a comprehensive and effective defense mechanism within academic institutions becomes increasingly imperative. In exploring potential solutions, this study delves into the applicability and efficacy of Bayesian filters, a class of probabilistic classifiers renowned for their aptitude in distinguishing between legitimate emails and spam messages. Bayesian filters utilize statistical algorithms to analyze email content, learning patterns and features to accurately categorize incoming emails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.