Abstract

This paper deals with a class of biobjective mixed binary linear programs having a multiple-choice constraint, which are found in applications such as Pareto set–reduction problems, single-supplier selection, and investment decisions, among others. Two objective space–search algorithms are presented. The first algorithm, termed line search and linear programming filtering, is a two-phase procedure. Phase 1 searches for supported Pareto outcomes using the parametric weighted sum method, and Phase 2 searches for unsupported Pareto outcomes by solving a sequence of auxiliary mixed binary linear programs. An effective linear programming filtering procedure excludes any previous outcomes found to be dominated. The second algorithm, termed linear programming decomposition and filtering, decomposes the mixed binary problem by iteratively fixing binary variables and uses the linear programming filtering procedure to prune out any dominated outcomes. Computational experiments show the effectiveness of the linear programming filtering and suggest that both algorithms run faster than existing general-purpose objective space–search procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.