Abstract

Ground filtering is one of the essential steps for processing airborne light detection and ranging data in forestry applications. However, the performance of existing methods is still limited in forested areas due to the complex terrain and dense vegetation. To overcome this limitation, we proposed an improved surface-based filter based on multi-directional narrow window and cloth simulation. The innovations mainly involve two aspects as follows: (1) sufficient and uniformly distributed ground seeds are identified by merging the lowest points and line segments from the point clouds within a multi-directional narrow window; (2) complete and accurate ground points are extracted using a cyclic scheme that includes incorrect ground point elimination using the internal force adjustment of cloth simulation, terrain reconstruction with moving least-squares plane fitting, and ground point extraction based on progressively refined terrain. The proposed method was tested in five forested sites with various terrain characteristics and vegetation distributions. Experimental results showed that the proposed method could accurately separate ground points from non-ground points in different forested environments, with the average kappa coefficient of 88.51% and total error of 4.22%. Moreover, the comparative experiments proved that the proposed method performed better than the classical methods involving the slope-based, mathematical morphology-based and surface-based methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call