Abstract

AbstractThis paper synthesizes a filtering adaptive neural network controller for multivariable nonlinear systems with mismatched uncertainties. The multivariable nonlinear systems under consideration have both matched and mismatched uncertainties, which satisfy the semiglobal Lipschitz condition. The nonlinear uncertainties are approximated by a Gaussian radial basis function (GRBF)‐based neural network incorporated with a piecewise constant adaptive law, where the adaptive law will generate adaptive parameters by solving the error dynamics between the real system and the state predictor with the neglection of unknowns. The combination of GRBF‐based neural network and piecewise constant adaptive law relaxes hardware limitations (CPU). A filtering control law is designed to handle the nonlinear uncertainties and deliver a good tracking performance with guaranteed robustness. The matched uncertainties are cancelled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is required to eliminate the effect of the mismatched uncertainties on the output. Since the virtual reference system defines the best performance that can be achieved by the closed‐loop system, the uniform performance bounds are derived for the states and control signals via comparison. To validate the theoretical findings, comparisons between the model reference adaptive control method and the proposed filtering adaptive neural network control architecture with the implementation of different sampling time are carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.