Abstract
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431–1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265–3275, 2013], new closures for the filtered inter-phase drag and stresses in the gas and particle phases are constructed from highly-resolved 3-D simulations of gas-particle flows. These new closure relations are then validated through the bubbling-fluidized-bed challenge problem presented by National Energy Technology Laboratory and Particulate Solids Research Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.