Abstract
Recently, Katsevich proved a filtered backprojection formula for exact image reconstruction from cone-beam data along a helical scanning locus, which is an important breakthrough since 1991 when the spiral cone-beam scanning mode was proposed. In this paper, we prove a generalized Katsevich's formula for exact image reconstruction from cone-beam data collected along a rather flexible curve. We will also give a general condition on filtering directions. Based on this condition, we suggest a natural choice of filtering directions, which is more convenient than Katsevich's choice and can be applied to general scanning curves. In the derivation, we use analytical techniques instead of geometric arguments. As a result, we do not need the uniqueness of the PI lines. In fact, our formula can be used to reconstruct images on any chord as long as a scanning curve runs from one endpoint of the chord to the other endpoint. This can be considered as a generalization of Orlov's classical theorem. Specifically, our formula can be applied to (i) nonstandard spirals of variable radii and pitches (with PI- or n-PI-windows), and (ii) saddlelike curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.