Abstract
BackgroundEstablishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types. Heating, ventilation, and air conditioning (HVAC) filters hold promise as long-term, spatially integrated, high volume samplers to characterize the airborne microbiome in homes and other climate-controlled spaces. In this study, the effect that dust recovery method (i.e., cut and elution, swabbing, or vacuuming) has on the microbial community structure, membership, and repeatability inferred by Illumina sequencing was evaluated.ResultsThe results indicate that vacuum samples captured higher quantities of total, bacterial, and fungal DNA than swab or cut samples. Repeated swab and vacuum samples collected from the same filter were less variable than cut samples with respect to both quantitative DNA recovery and bacterial community structure. Vacuum samples captured substantially greater bacterial diversity than the other methods, whereas fungal diversity was similar across all three methods. Vacuum and swab samples of HVAC filter dust were repeatable and generally superior to cut samples. Nevertheless, the contribution of environmental and human sources to the bacterial and fungal communities recovered via each sampling method was generally consistent across the methods investigated.ConclusionsDust recovery methodologies have been shown to affect the recovery, repeatability, structure, and membership of microbial communities recovered from dust samples in the built environment. The results of this study are directly applicable to indoor microbiota studies utilizing the filter forensics approach. More broadly, this study provides a better understanding of the microbial community variability attributable to sampling methodology and helps inform interpretation of data collected from other types of dust samples collected from indoor environments.
Highlights
Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health
Quantitative DNA recovery All three techniques were evaluated for their ability to recover total, bacterial, and fungal DNA from the HVAC filter
Between-sample diversity and variability Our results indicate that vacuum and swab samples of HVAC filter dust were more repeatable than cut samples in terms of both community structure and membership for both bacteria and fungi
Summary
Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. Depending on the method employed, these methods may recover low biomass quantities that can limit their suitability for DNA-intensive analyses, such as simultaneous sequencing of bacterial, fungal, and viral communities from a single sample, metagenomic sequencing, and/or multiple polymerase chain reaction (PCR) and quantitative PCR (qPCR) assays. They represent a temporal and spatial snapshot of airborne concentrations that may not be representative of other spaces in the building or a different sampling period [40]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.