Abstract

The Filter Bank Common Spatial Pattern (FBCSP) algorithm employs multiple spatial filters to automatically select key temporal-spatial discriminative EEG characteristics and the Naive Bayesian Parzen Window (NBPW) classifier using offline learning in EEG-based Brain-Computer Interfaces (BCI). However, it has yet to address the non-stationarity inherent in the EEG between the initial calibration session and subsequent online sessions. This paper presents the FBCSP that employs the NBPW classifier using online adaptive learning that augments the training data with available labeled data during online sessions. However, employing semi-supervised learning that simply augments the training data with available data using predicted labels can be detrimental to the classification accuracy. Hence, this paper presents the FBCSP using online semi-supervised learning that augments the training data with available data that matches the probabilistic model captured by the NBPW classifier using predicted labels. The performances of FBCSP using online adaptive and semi-supervised learning are evaluated on the BCI Competition IV datasets IIa and IIb and compared to the FBCSP using offline learning. The results showed that the FBCSP using online semi-supervised learning yielded relatively better session-to-session classification results compared against the FBCSP using offline learning. The FBCSP using online adaptive learning on true labels yielded the best results in both datasets, but the FBCSP using online semi-supervised learning on predicted labels is more practical in BCI applications where the true labels are not available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.