Abstract

Canonical correlation analysis (CCA) is one of the most used algorithms in the steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) systems due to its simplicity, efficiency, and robustness. Researchers have proposed modifications to CCA to improve its speed, allowing high-speed spelling and thus a more natural communication. In this work, we combine two approaches, the filter-bank (FB) approach to extract more information from the harmonics, and a range of different supervised methods which optimize the reference signals to improve the SSVEP detection. The proposed models are tested on the publicly available benchmark dataset for SSVEP-based BCIs and the results show improved performance compared to the state-of-the-art methods and, in particular, the proposed FBMwayCCA approach achieves the best results with an information transfer rate (ITR) of 134.8±8.4 bits/minute. This study indeed suggests the feasibility of combining the fundamental and harmonic SSVEP components with supervised methods in target identification to develop high-speed BCI spellers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call