Abstract

Understanding filopodial formation in motile cells is a pertinent task in cell biology. In the present study we show that expression of the human water channel aquaporin-9 (AQP9) in different cell lines induces the formation of numerous filopodial extensions. Several lines of evidence support the role of aquaporins functioning both as a water channel and signaling participant. The number of filopodia is decreased by site-directed serine substitutions in putative PKC-binding or -phosphorylation sites at amino acid position 11 and 222 in AQP9. The filopodial phenotype obtained with wild-type AQP9 is associated with elevated levels of active Cdc42, while serine-deleted mutants have reduced levels of GTP-Cdc42. Co-transfection with inhibitory N-WASP CRIB completely abolishes wild-type AQP9-induced filopodia formation. Active PKC ζ phosphorylates wild-type AQP9 and myristoylated PKC ζ pseudosubstrate inhibits the formation of filopodia in AQP9-expressing cells. Expression of wild-type AQP9, but not mock or serine substituted mutants, increases sensitivity to hypo-osmolaric conditions, yielding a rapid morphological rounding of cells and cell death starting as early as 24 h post-transfection. We propose that increased water influx through AQP9 is critically involved in the formation of membrane protrusions, and that AQP9-induced actin polymerization is augmented by activation of Cdc42 and PKC ζ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.