Abstract

Thin films of hydrogenated amorphous germanium (a-Ge:H) deposited at high growth rate by radiofrequency (RF) glow discharge with 1sccm GeH4 diluted in 40sccm H2 have been studied. The effect of the films thicknesses on the defect density and on the structural parameters was carefully investigated by means of infrared spectroscopy, optical transmission measurements, and the photothermal deflection spectroscopy (PDS) technique. The results of this investigation show that when the films thicknesses increase, the total hydrogen content (CH) decreases and the hydrogen-bonding configuration changes. The results of these changes appear clearly on the defects density and on the microstructure parameter of the films, while the disorder parameter EOV and the optical gap ET remain practically constant (EOV≈45±2meV,ET=1.08±0.02eV). The improvement of these parameters is mainly due to the incorporation of the hydrogen in the bulk of the material as the monohydride groups (Ge-H) rather than the polyhydride groups (Ge-H2 and Ge-H2n) when the films thicknesses increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.