Abstract

The purpose was to test the feasibility of preparing cast films directly from an aqueous suspension of alkaline pretreated and fine milled chicken feathers, and to evaluate the impact of different additives on film formation and the tensile properties of the resulting films. The feather suspension consisted of stiff and sharp-pointed fibers together with more round-shaped fines. Films cast from this suspension were opaque and porous. While films without additives were fragile with drying-induced defects, film formation was improved with additives, especially with ethanolamine and maleic acid at 20% and 30% concentrations. A synergistic plasticizing effect was observed with ethanolamine and formamide, and strength of the films was improved with sodium alginate. However, the overall impact of additives on the tensile properties in general and strain at break in specific was limited. This was likely due to the dominating role of the porous film structure and the stiff fibers with a limited reactivity towards the additives.

Highlights

  • The target of sustainable economy is to utilize biomass-derived materials for high-volume applications [1]

  • An aqueous suspension was prepared from chicken feathers using an alkaline pretreatment followed by a three-stage mechanical milling process consisting of crushing, grinding, and microfluidization

  • The purpose was to avoid costs and complexity related to extraction of keratin or chemical modification of feathers

Read more

Summary

Introduction

The target of sustainable economy is to utilize biomass-derived materials for high-volume applications [1]. There is interest, for example, in packaging industry towards more sustainable materials, and biobased plastics and biopolymers have been widely studied. Interesting sources of biomass are by-products from animal sources (legs, heads, bones and feather) currently used for fertilizers, animal feed and pet food. The global production of broiler meat was estimated to reach 98.4 million tons in 2019 [2]. Feathers constitute up to 10% out of chicken body weight [3].

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.