Abstract

Cadmium telluride (CdTe) and zinc telluride (ZnTe), direct gap semiconductors with room-temperature band gap energies of 1.45 and 2.25 eV, respectively, form a continuous series of solid solutions (Cd1−xZnxTe). The band gap energy of Cd1−xZnxTe can be tailored in the 1.45–2.25 eV range. Cd1−xZnxTe with band gap energy of 1.65–1.75 eV is suitable as the upper member of a two-cell tandem structure for the photovoltaic conversion of solar energy. In this work, polycrystalline films of Cd1−xZnxTe have been deposited on glass, CdS/SnO2:F/glass, and Cd1−xZnxS/SnO2:F/glass substrates at 400 °C by the reaction of dimethylcadmium (DMCd), diethlyzinc (DEZn), and diisopropyltellurium (DIPTe) in a hydrogen atmosphere. The composition of Cd1−xZnxTe films determined by wavelength dispersive spectroscopy and x-ray diffraction has been correlated with the band gap energy deduced from the junction photovoltage spectroscopy and optical transmission. The structural and electrical properties of Cd0.7Zn0.3Te (band gap energy 1.70 eV) films have been evaluated. Thin film Cd0.7Zn0.3Te/CdS and Cd0.7Zn0.3Te/Cd0.7Zn0.3S heterojunctions have been prepared and characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.